Trace Formulas and Borg-type Theorems for Matrix-valued Jacobi and Dirac Finite Difference Operators
نویسنده
چکیده
Borg-type uniqueness theorems for matrix-valued Jacobi operators H and supersymmetric Dirac difference operators D are proved. More precisely, assuming reflectionless matrix coefficients A,B in the self-adjoint Jacobi operator H = AS + AS + B (with S the right/left shift operators on the lattice Z) and the spectrum of H to be a compact interval [E−, E+], E− < E+, we prove that A and B are certain multiples of the identity matrix. An analogous result which, however, displays a certain novel nonuniqueness feature, is proved for supersymmetric self-adjoint Dirac difference operators D with spectrum given by [ −E 1/2 + ,−E 1/2 − ] ∪ [ E 1/2 − , E 1/2 + ] , 0 ≤ E− < E+. Our approach is based on trace formulas and matrix-valued (exponential) Herglotz representation theorems. As a by-product of our techniques we obtain the extension of Flaschka’s Borg-type result for periodic scalar Jacobi operators to the class of reflectionless matrix-valued Jacobi operators.
منابع مشابه
Weyl–titchmarsh M-function Asymptotics, Local Uniqueness Results, Trace Formulas, and Borg-type Theorems for Dirac Operators
We explicitly determine the high-energy asymptotics for Weyl– Titchmarsh matrices associated with general Dirac-type operators on half-lines and on R. We also prove new local uniqueness results for Dirac-type operators in terms of exponentially small differences of Weyl–Titchmarsh matrices. As concrete applications of the asymptotic high-energy expansion we derive a trace formula for Dirac oper...
متن کاملBorg-type Theorems for Generalized Jacobi Matrices and Trace Formulas
The paper deals with two types of inverse spectral problems for the class of generalized Jacobi matrices introduced in [9]. Following the scheme proposed in [5], we deduce analogs of the Hochstadt–Lieberman theorem and the Borg theorem. Properties of a Weyl function of the generalized Jacobi matrix are systematically used to prove the uniqueness theorems. Trace formulas for the generalized Jaco...
متن کاملTrace Formulas and a Borg-type Theorem for Cmv Operators with Matrix-valued Coefficients
We prove a general Borg-type inverse spectral result for a reflectionless unitary CMV operator (CMV for Cantero, Moral, and Velázquez [13]) associated with matrix-valued Verblunsky coefficients. More precisely, we find an explicit formula for the Verblunsky coefficients of a reflectionless CMV matrix whose spectrum consists of a connected arc on the unit circle. This extends a recent result [39...
متن کاملM - Function Asymptotics and Borg - Type Theorems
We explicitly determine the high-energy asymptotics for Weyl-Titchmarsh matrices associated with general Dirac-type operators on half-lines and on R. We also prove new local uniqueness results for Dirac-type operators in terms of exponentially small diierences of Weyl-Titchmarsh matrices. As concrete applications of the asymptotic high-energy expansion we derive a trace formula for Dirac operat...
متن کاملRemarks on the Paper ``Coupled Fixed Point Theorems for Single-Valued Operators in b-Metric Spaces''
In this paper, we improve some recent coupled fixed point resultsfor single-valued operators in the framework of ordered $b$-metricspaces established by Bota et al. [M-F. Bota, A. Petrusel, G.Petrusel and B. Samet, Coupled fixed point theorems forsingle-valued operators in b-metric spaces, Fixed Point TheoryAppl. (2015) 2015:231]. Also, we prove that Perov-type fix...
متن کامل